25th National Award For Excellence in Energy Management 2024

Dalmia Cement (B) Ltd, Ariyalur Plant Welcomes you all !

Team Members:

Mr. V. Saravanan - Process Head Mr A. Murugan – Energy Manager Mr. BR Prasanna Kumar - Envt Head

Agenda

1. Group Profile

- Founded by Shri Jaidayal Dalmia in 1935
- Pan India presence in Cement business
- Capacity of 46.6 Million Tons per annum
- **4**th largest cement manufacturer in India
- Manufacturing of Special cements like Oil well, Air strip

& Railway sleeper grade cement.

Plant Profile

Dalmia cement

- World class cement manufacturing facility available
- > Installed Capacity:
 - Clinker 2.5 MTPA
 - Cement 4.0 MTPA
 - Captive Power Plant 27.0 MW
 - Solar Power Plant 11.0 MW

P

Equipment	Supplier	Rated	Operating	Beyond Capacity	
Crusher	MMD	900 TPH	730 TPH	-18.9%	
Raw Mill-VRM	Pfeiffer	400 TPH	500 TPH	25.0%	
Pyro-5Stage Preheater	FLsmidth	4500 TPD	7000 TPD	60.0%	EUCC
Coal Mill-VRM	Pfeiffer	40TPH-Coal, 25-Pet-coke	32 TPH (Pet-coke)	28.0%	
Cement mill- VRM	Pfeiffer	300 TPH	400 TPH	33.3%	

Operational Performance

Specific Energy Consumption – 3 Years

3. Information on Competitors, National & Global benchmark

ENERGY	BENCHMARKING		
Parameters	Electrical SEC (kWh / T of Cement)	Thermal SEC (kcal / kg of Clinker)	TSR%
Comparison of specific energy consumption (SEC)			
SEC : Dalmia Cement –Ariyalur Plant	66.0	763	38% *
SEC Values for Competitor - 1 :	69.30	735	~ 20%
SEC Values for Competitor - 2 :	71.40	746	0 to 10%
SEC Values for Competitor - 3 :	71.65	758	0 to 5%
National Benchmark for SEC :	56.14	676	-
International Benchmark for SEC :	55.0	670	
SEC Target for FY 2023-24 :	63.3	760 with 35% TSR	
Please mention the sources / references for the furnished data (National & International Data)	A (s per CII Bench marking det National & International Da	ails ta)

Road Map to Achieve Benchmark/National/Global Best

Reduction of Electrical Energy Consumption

Raw

Mill

Reduction of RVRM dam ring optimization: Sep'24

Reduction in SPC by 1.5 kWh/MT

HAG Duct Modification and re-routing SPC reduction 0.2 KWH/MT

Pre Heater

Pre Heater: Jan'25

CVRM

- Reduce pressure drop and exit gas temperature in Preheater system by conducting CFD study & implementing the outcones – Jan'25
- Lowering dispersion box height in identified cyclones and increasing heat transfer in PH system – Jan'25
- Reduce the temperature drop across tertiary air duct (Takeoff to PC joining point)- Completed

CVRM Gear box Upgradation: Feb'25

CVRM gear box upgradation; 0.2 kwh/MT CVRM-2 dam ring optimization - Completed

11

Coal mill duct modification- Sep'24

Modification of Coal mill fan duct; SPC reduction by 0.2 kWh/MT

Coal mill

Road Map to Achieve Benchmark/National/Global Best

Reduction of Thermal Energy Consumption

Kiln

Kiln refractory & False Air: July'24

Replacementofconventionalrefractory by shotcrete;5 to 6 Kcal/Kg ClPi

Pre Heater: Jan'25

Green

Fuel

- Reduce pressure drop and exit gas temperature in Preheater system by conducting CFD study & implementing the outcones – Jan'25
- Lowering dispersion box height in identified cyclones and increasing heat transfer in PH system – Jan'25
- Reduce the temperature drop across tertiary air duct (Takeoff to PC joining point)- Completed

AFR Feed Chute: July'24

AFR Feed Chute Modification and CO elimination 3 Kcal/kg Clinker.

Cooler Optimization: Jul'24

Cooler Grate Plates and blades replacement; achieved savings of 10 Kcal/kg cl

Cooler

4. Energy Saving projects implemented in last three years

		With Inv	estment		Without II	nvestment
Year 1	No. Of Proposals	Investments in Lakhs	Savings in Lakhs	Payback Months	No. Of Proposals	Savings in Lakhs
2021-22	10	163	549	3.6	2	277
2022-23	8	501	85	270	2	2.1
2023-24	9	615	110	70.4	1	2.0
Total	27	1279	744	344	5	281.1

List of Major Encon project in FY 2023-24

SI. No.	Title of P Savings: INR 56.1 Millions	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving (Rs million)	Annual Thermal Saving (Ton/year)	Annual Thermal Saving (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Payback (Months)
1	Enhancement of productivity in Raw Mill by up-gradation of Classifier	1246780	9.1	-	-	9.1	40	4.39
2	Up-gradation of Preheater Fan with high efficiency impeller	782210	5.7	-	-	5.7	20	3.50
3	Up-gradation of Baghouse Fan with high efficiency impeller	391105	2.9	-	-	2.9	8	2.80
4	Up-gradation of Clinker Cooler with IKN Cooler	3259210	23.8	4179.0	39.1	62.9	237	9.96
5	Up-gradation of Pre-calciner by duct height extension	-	-	1045.0	9.8	9.8	53	5.41
6	Reduction of radiation loss in Pre Heater by applying Heat Resistance Paint	-	-	209.0	2.0	2.0	10	5.00
7	Reduction of PH pressure drop by retro-fitting of Top Cyclone	260737	1.9	313.0	2.9	4.8	20	4.16
8	Up-gradation of Cement Mill Classifier with High Efficiency	1046787	7.6	-	-	7.6	144	18.84
9	Enhancement of CVRM mill output by retro-fitting of CVRM gear box	697858	5.1	-	-	5.1	83	16.29
	Total	7684687	56.1	5746	53.8	109.9	615	70.35

List of Major Encon project in FY 2022-23

Sl. No.	Title of Pr Savings: INR 85.79 Millions	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving (Rs million)	Annual Electrical Cost Saving (Rs million)	Total Annual Savings (Rs million)	Investment Made (Rs million)	Pay Back Months
I	Solar Power plant in plant campus to utilize renevable energy for plant operation	8671023	3754	74.65	74.65	480	77
2	PPC DIP Power reduction by Process Optimization by Classifier Seal Gap reduction , Nozzle ring optimization and usage of Grinding Aid	477937	204	4.11	4.11	1.3	4
3	Nozzle ring optimization in Raw mill for Productivity improvement	287272	48	2.47	2.47	0	-
4	Installation of new silo feed elevator with capacity of 550 TPH to enhance the CVRM PPC output by 20 TPH	252000	113	2.16	2.16	19.5	108
5	Raw Mill RABH Fan power reduction by reduction in false air	106260	14	0.91	0.91	0.24	3.1
6	Coal mill nozzle ring modification to improve productivity and reduction in mill run hours	98820	48	0.85	0.85	0.1	1.4
7	Chiller efficiency improvement through optimization of operating parameters	60000	-	0.51	0.51	-	0
8	CVRM new conveying system with RAL for reject dust handling to reduce load and power in fly ash elevator	12965	6.9	0.11	0.11	0.05	5
9	Providing APFC panels with detunes filters for stacker reclaimer power distribution.	3330	0.4	0.02	0.02	0.17	71
	Total	99,69,607	4188.3	85.79	85.79	501.36	

List of Major Encon project in FY 2021-22

Dalmia cement

SI. No	Title of Project Savings: INR 21.5 Millions	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving (Rs million)	Annual Thermal Saving (Ton/year)	Annual Thermal Saving (Rs million)	Total Annual Savings (Rs million)	Investme nt Made (Rs million)	Payback (Months)
1	Reduction of Pressure drop across Raw Mill nozzle ring by modification of nozzle pattern	384411	2.65			2.7	1	5
2	Up-gradation of Coal Classifier with high efficiency	460420	3.18			3.2	4.99	19
3	Reduction of Radiation losses by applying heat resistant paint in kiln shell			252	3.46	3.5	0.8	3
4	Increase in Clinker Liquid content by increasing KF alumina from 3.2 to 3.5%			1051	14.41	14.4	0.0	0
5	Cyclone -3 Dip tube replaced with new thereby PH exit reduced by 20 Deg C			1051	14.41	14.4	3.8	3
6	TAD temperature increased by replacing damaged duct portion with new duct around 20m			1261	17.29	17.3	3.3	2
7	PC Outlet temperature fluctuations optimized by implementation of Puzzy logic in EO System			840	11.52	11.5	0.8	1
8	In AFR discharge chute jamming was completely avoided by providing Air Blaster & SS plate	26673	0.18			0.2	0.4	26
9	Enhanced shredder productivity by installation of ARCO plate instead of MS plate	80018	0.55			0.6	0.5	11
10	Enhanced OPC productivity from 260 to 290 TPH and reduction of Sp. Power consumption	1922339	13.26			13.3	0	0
11	Cement Bag house False air reduced by 1% by replacement of anval rotary air lock type	240292	1.66			1.7	0.7	5
	Total Saving	31,14,154	21.5	4,454	61.1	82.6	16.3	2.4

Energy Saving project implemented in FY 2023-24

Dalmia cement

Reduction of SPC in Cement Mill (CVRM) in PPC DIP

Constrain:

Reduction of Specific Power Consumption in Cement Mill Grinding

Project Details :

- PPC DIP Power reduction by Process Optimization
- > Nozzle Ring Optimization.
- Classifier Seal Gap Optimization.
- Grinding Aid dosing Optimization

Benefits

- ☑ Investment Nil Inhouse Modification
- ☑ Cost Saving 4.11 Lakhs/annum
- **Payback 4 months**

6. Innovative Projects

A. Innovative Approach to Improve the Productivity & TSR

Pyro Productivity & TSR Improvement

Pyro Upgradation to Reach 7000 TPD Clinker Production with 38% TSR

Completed Successfully in 69 Days with investment cost of INR 220 Cr

Dalmia cement

B. Raw mill (RVRM) Productivity Improvement to reduce Power

Raw mill (RVRM) Productivity Improvement

Upgradation of Pre Processing System with Latest Technologies

Additional Shredder

Wind Shifter

Fine Shredder

- New Primary Shredding System 40 TPH.
- Wind Shifter for segregation of Heavy weight Particles.
- Fine Shredder 25 TPH for size less than 30 mm
- Investment: 35 Crores

Daln

FUTURE TODAY

3. AFR Preprocessing Circuit Process Flow Diagram

Unique Features of New Recycle (First time in DCBL Group) Receipt in Primary (Harden) Shredder ۲ Screen (NIHOT) - 40mm size final pdt ۲ Higher Size to wind shifter to ۲ elimination of high dense Reject of shifter taken out separately. ۲ Output to Fine Shredder (M&J). ۲

- Output PC feeding or storage
- Separate provision for Primary Shredder to operate standalone mode bypassing Fine Shredder.

<u>New Shredder Circuit Sample – Sieve Analysis</u>

	Cumulative (Passing) %									
Description	300 mm	200 mm	100 mm	80 mm	70 mm	40 mm	25 mm	10 mm	<10 mm	woisture %
Primary Shredder Input	33.56	30.45	26.30	23.53	20.07	13.15	10.73	6.23		36.40
Primary Shredder Output	71.19	58.85	48.56	46.91	41.98	36.21	25.93	13.58		35.10
Fine Shredder Input	60.75	50.93	43.93	41.59	40.19	30.84	25.70	17.29		35.00
Primary Shredder Reject	63.70	56.85	46.23	44.52	39.73	31.85	22.95	10.96		34.10
Product Sample	100.00	100.00	100.00	93.31	81.59	49.37	25.10	11.72		34.90

M&J New Fine Shredder Output

TSR% Increased from 25% to 38%

Daln

FUTURE TODAY

7. Utilization of Renewable Energy Resources - Onsite

Replacement of Electrical Energy with Renewable Energy	Annual Energy Generated in 2020-21 (million kWh)	% Share	Annual Energy Generated in 2021-22 (million kWh)	% Share	Annual Energy Generated in 2022-23 (million kWh)	% Share	Annual Energy Generated in 2023-24 (million kWh)	% Share
Wind Energy	21.98	50	21.49	50	24.34	50	25.94	50
Replacement of Thermal Energy with Renewable Energy	Equivalent Annual Fuel Savings in 2020-21 (million kcal/year)	% Share	Equivalent Annual Fuel Savings in 2021-22 (million kcal/year)	% Share	Equivalent Annual Fuel Savings in 2022-2023 (million kcal/year)	% Share	Equivalent Annual Fuel Savings in 2023-2024 (million kcal/year)	% Share
Solar Thermal Energy	_	-	-	-	11	100	141.6	100

Renewable Energy – Solar Power Plant

11Mwp SOLAR POWER PLANT DALMIA CEMENT (BHARAT) LIMITED, ARIYALUR

COLUMN

AC CAPACITY: 9.24 MW DC CAPACITY: 11 MWp TOTAL NO OF PVMODULES: 20188 NOS TOTAL NO OF INVERTERS: 42 NOS PLANT COMMISSIONING DATE :- 21.07.2022

Dalmia cement

FUTURE TODAY

Generation: 141.6 Lakhs Units

CO₂ emission reduction

Battery Operated Vehicles

Solar Panels for Security Vigilance room

Road Map to RE100

LCoE

Levelized energy cost for 25 years for Off-site RE Projects in both Opex & Capex

Off Site solar PP

Installation of Off site solar plant: Jan'25

Completion of under going projects for Off Site and On Site solar projects of 24 MW

Off Site Wind Farm: Mar'25

site

Wind

• Installation of ~ 16 MW wind farm

RE purchase from third party under OPEX: Oct'24

Purchase

Power

Addition of Solar projects

capacity in Opex mode based on economic feasibility in replacement to CPP or Grid

8. Pre-processing and Co-processing circuit

Dain

Clean & Green is Sustainable & Profitable

FY	202:	1-22		202	2-23		2023	8-24
MATERIAL	Qty, (MT)	% TSR	Qty, (MT)	% TSR	Qty,	(MT)	% TSR
RDF	33495	7.90%	392	39	8.90%	32	733	5.92%
Plastic waste	14502	5.90%	168	46	6.50%	248	31.1	7.78%
Carbon black	3192	1.60%	353	37	1.90%	112	.795	0.05%
Cotton Waste	1064	0.30%	106	54	0.30%	111	5.54	0.24%
SCF	703	0.30%	68	7	0.30%	21	.27	0.73%
Paint Sludge	655	0.20%	45	5	0.20%	37	.01	0.01%
Resin Waste	526	0.20%	76	6	0.20%			
Tyre Chips	294	0.10%	13	3	0.10%			
Solid Waste Mix	129	0.00%	23	3	0.00%	20	47	0.42%
ULB						59	92	1.84%
MLP						12	752	4.23%
Shredded RDF						159	25.5	3.15%
Shredded Biomass						26	00	0.43%
Coir waste						644	2.32	1.43%
Herbal waste						143	35.4	0.26%
Other AFR's	437	0.10%	56	6	0.10%	3	78	0.09%
Total	54996	16.60%	635	26	18.50%	108	529	26.57%
Green Raw Material		2021	-22		2022-23		2	023-24
Lime Sludge - MT (Wet)		473	5		9111.2		50)41.643
Total Quantity-MT		473	5		9111. <mark>2</mark>		50	041.643

Efforts & strategies: Pre-processing system

- ✓ Reduction in overall ash to 5 to 6 %
- ✓ Separation of Stones and oversize material
- ✓ GF CV increase by 200 Kcal
- ✓ Investment: 80 Lakhs

New Chlorine Bypass System Installed and Commissioned in Nov 2023

Designed chlorine by pass for achieving TSR 38%

Impact on quality & production

Actions taken to achieve desired quality

Clinker Production	TPD	5500	5500	5500	7000 **
% TSR	%	6%	15%	20%	30%
Raw meal LSF	%	97	100	101	102
KF alumina %	%	3.3	3.35	3.45	3.6
% of RM fineness on 90 mic	%	18	17	16	16
% of Coal fineness on 90 mic	%	3	2.5	2	1.5
Clinker C ₃ S	%	49	48	48	48
Clinker free lime	%	1.6	1.8	2	2
Clinker chloride %	%	0.04	0.07	0.095	0.085

** Chlorine bypass in operation

CO2 emission (Scope-1) – Kg/ MT of Cement

Short Term:

- Increase the AFR utilization from 35 to 40%
- Increase of PPC product ratio from 50 to 80%
- Utilization of Renewable energy to 50%

Long Term:

- Negative carbon footprint on 2040
- Carbon Capturing & Utilization
- 100% AFR utilization in PC

Dalmia cement

Dalmia Determined Contributions (DDCs) for Roadmap 2040

- Usage of 100% renewable Power under fossil free electricity initiative by 2030 (RE100) – 11.0 MW Solar inside Plant
 Planned 8.0 MW Wind Farm & 24 MW
 Solar by 2025 and exchange.
- Double energy productivity by 2030 (EP100) – Debottle neck project completed
- Renewable biomass and waste to replace fossil fuel use by 2035 – Currently 38% TSR, focus to 45%
- Carbon Capture and Utilisation (CCU) for process emissions and carbon
 Sequestration by 2040 and adoption of other advance green technologies. –
 Knowledge partners tied up and pilot study in progress

Global Recognitions

"Companies such as Dalmia Cement and Mahindra are driving innovation. But we need many more to join them". Hon'ble UN Secretary-General Mr. António Guterres (Aug. 2020)

Source: https://www.youtube.com/watch?v=G5FBpm4-6eg

Hon'ble UN Secretary General invited Dalmia Cement to share its actions and commitments on climate change during UN General Assembly along with 63 country heads at the UN Climate Action Summit, New York.

Technical Assistance Consultant's Report

Project Number: TA-9686 REG

Integrated High Impact Innovation in Sustainable Energy Technology - Prefeasibility Analysis for Carbon Capture, Utilization and Storage (Subproject 2)

<u>Outcome</u>

- Feasibility of CCU and CCS for long term perspective
- Regulatory frameworks
- Implementation challenges
- **D** Policy & Collaboration with partners

Prefeasibility Study on Carbon Capture and Utilization Cement Industry of India REVISED REPORT

October 2021

sectors where CO_2 emissions are mostly from energy usage, significant proportion of CO_2 emissions from cement industry are process centric. Without practical alternatives, the sector needs carbon capture, utilization and storage (CCUS) to achieve its climate change goals.

Dalmia Cement (Bharat) Limited('DCBL'), one of the leading cement companies in India, has announced to become carbon negative by 2040. Carbon capture and Utilisation (CCU) is one of the key levers identified by the company to achieve its goal, considering 55-60% GHG emissions in cement plant are attributable to cement process. The company is exploring the feasibility of building a large-scale demonstration CCU plant in its Ariyalur cement facility.

This study is being commissioned to assess the techno-economic pre-feasibility of the CCUS options in the Ariyalur cement factory with support from Asian Development Bank (ADB). Key findings of this study are presented below.

Capture CO₂ from a cement plant

Despite a lack of commercial CCUS projects in the cement sector, there are numerous demonstration and pilot CCUS projects at cement plants around the world. Most applicable CO_2 capture technologies (commercially applied in other industries) for cement industry are post combustion and oxy-fuel combustion technologies. Post-combustion technologies are preferred as it is commercially available and applied to other dilute CO_2 streams (power stations) and it does not interfere with the operation of cement production.

It is technologically feasible to build and operate a 500,000 tonnes per year CO₂ capture plant at the Ariyalur plant, using chemical absorption with amine-based solvents. A conceptual design for an amine-based solvent carbon capture plant was completed with major equipment sizing and costing.

Dalmia Cement (Bharat) Limited, Ariyalur Green Purchase policy

1. Aim at making our value chain environmental friendly and responsible.

2. Committed to comply with the requirements of local laws and regulations related to environment in which it operates and from where it sources any material, product or services.

3. Realize that the scope and nature of operations of our suppliers vary and hence emphasis on these principles may vary accordingly. The following shall be followed at DCBL, Ariyalur shall:

Energy:

a. All new purchases of electronic items & energy-using appliances shall be energy efficient equipment's.

- **b.** All copiers and printers purchased or leased shall be capable of double-sided copying/printing.
- c. Complete phase out of incandescent, fluorescent light sources & CFL bulbs into LED.
- d. Insisting suppliers strive towards enhancing the efficiency and performance of the equipment and processes by continual improvement, monitoring and assessment of technology.

e. Identifying the scope of replacing conventional sources of energy with sustainable and renewable sources in their operations thereby fighting for climatic change.

Issue No: 1

Revision No: 2

Date: 01.06.2022

Robert.T

Unit Head

Implementation of ISO 50001/Green Co/IGBC rating

ISO -50001:2018

Green-Pro Certification from CII

ACCREDITED UNIT: DW Rushman Assumpt R.V., Zeolanese 1, 2004LR, Remote dd, Netherlands - Till + 21 5/11/202189, www.drv.com/assumption

- Increased PPC Cement Production from 50% to 80%.
- Utilizing waste materials from other industries like;
 - Dry & Wet Fly ash TPP up to 33.5%.
 - Gypsum waste from Chemical industries up to 2%.
 - Clinker CC ratio reduced & thereby reduction in CO₂ emission.

Daily Monitoring and Reporting System

and Knowledge Manager

Daily Review Meeting Chaired by Technical Head

Online Specific power consumption is monitored by CCR Operators

On line Energy management System (EMS)

Software for identification of Compressors run hrs, Idle running hours of Major Equipment & Raw water Consumption

Production Software (PHP) for making Daily Production & Power Report & Circulating to all Executives by using IOTs & Clouds

Mobile Application apps

Plant Operation Server

Benefits:

- Real Time data monitoring
- Automated alerts
- Improve the reliability and productivity
- Scalable for AI

- 1. Reduction of Pressure drop across nozzle ring by modification of nozzle pattern (M/S Mechwell Design) that was learned and it was implemented in Raw Mill– Reduced the sp. Power consumption 0.16 kWH/MT
- 2. Reduction of Radiation losses by applying heat resistant paint (ES 70HT silicon paint) in kiln shell and it was implemented in Kiln shell– Reduced the SHC– 1.2 Kcal/Kg.Clinker
- Temperature drop reduction across TAD and reduction in SHC ~ 2 to 3 Kcal /kg Clinker

CII Energy Award – 10 Consecutive years

Thank you

FROM GREY TO GREEN

While the concrete may still appear grey, it will embody a green carbon footprint.

